非奇非偶函数的例子:1、f(x)=x+1。2、f(x)=x^2+x。 3、f(x)=(x+1)/(x-1)。4、f(x)=2^x对于函数定义域内的任意一个x,若f(-x)=-f(x)(奇函数)和f(-x)=f(x)(偶函数)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
非奇非偶函数判断方法
首先不论奇函数还是偶函数,定义域都要关于y轴对称。
1.看图像
奇函数关于原点对称;
偶函数关于Y轴对称;
即奇又偶就是即关于原点对称又关于Y轴对称,这种只有常数函数且为0的函数;
非奇非偶就是即不关于原点对称又不关于y轴对称的函数
2.看其能否满足一定的条件
奇函数,对任意定义域内的x都满足f(-x)=-f(x);
偶函数,对任意定义域内的x都满足f(-x)=f(x);
即奇又偶,对任意定义域内的x都满足f(-x)=f(x)且满足f(-x)=-f(x),这只有常数为0的函数;
非奇非偶,对任意定义域内的x不,f(-x)=f(x)和f(-x)=-f(x),都不成立。